VOC Emissions
From the Drying of Red Alder Lumber

Report to
Cascade Hardwoods

Report by
Michael R. Milota
Department of Wood Science and Engineering
Oregon State University
Corvallis, OR 97331

February 3, 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Results Summary</td>
<td>1</td>
</tr>
<tr>
<td>II Lumber Source and Handling</td>
<td>1</td>
</tr>
<tr>
<td>III Kiln Description and Operation</td>
<td>1</td>
</tr>
<tr>
<td>- Humidity control</td>
<td>2</td>
</tr>
<tr>
<td>- Temperature control</td>
<td>2</td>
</tr>
<tr>
<td>- Schedules</td>
<td>3</td>
</tr>
<tr>
<td>- Charge sequence</td>
<td>3</td>
</tr>
<tr>
<td>IV Sampling Systems and Methodologies</td>
<td>5</td>
</tr>
<tr>
<td>V Data Reduction and Treatment</td>
<td>7</td>
</tr>
<tr>
<td>- Flow calculations</td>
<td>7</td>
</tr>
<tr>
<td>- Moisture calculations</td>
<td>7</td>
</tr>
<tr>
<td>- Total hydrocarbon calculations</td>
<td>7</td>
</tr>
<tr>
<td>VI Sampling Results</td>
<td>8</td>
</tr>
<tr>
<td>VII Quality Assurance</td>
<td>14</td>
</tr>
<tr>
<td>- Leak checks</td>
<td>14</td>
</tr>
<tr>
<td>- Calibration</td>
<td>14</td>
</tr>
<tr>
<td>- Anomalies</td>
<td>14</td>
</tr>
</tbody>
</table>

APPENDICES

- Appendix 1. Detailed sampling procedures | 15 |
- Appendix 2. Data in electronic form | 24 |
- Appendix 3. Samples of field data sheets | 25 |
- Appendix 4. Calibration data | 29 |
LIST OF FIGURES

FIGURE 1. Schematic of kiln and sampling system ... 2
FIGURE 2. Drying schedule ... 3
FIGURE 3. Dry- and wet-bulb temperatures during the cycle 4
FIGURE 4A. Schematic of heated filter box. ... 6
FIGURE 4B. Photo of VOC sampling system .. 6
FIGURE 5. Hydrocarbon concentration and vent rate versus time 9
FIGURE 6. Cumulative emissions and rate of emissions versus time 10
FIGURE 7. Moisture content versus time for the charge 11
FIGURE 8. Cumulative emissions versus moisture content of the charge 12

LIST OF TABLES

TABLE 1. Summary of results ... 1
TABLE 2. Summary of sample runs for analysis of total hydrocarbon 13
I. Results Summary

Two charges, containing 62.0 and 72.6 board feet of 1" random width red alder lumber, were dried from green in a small kiln at Oregon State University. The second charge was dried because data was not collected during the last 24 hours of the first charge. The kiln dry- and wet-bulb temperatures based on a schedule provided by Cascade Hardwoods. The maximum temperature was 170°F (76.7°C). The air velocity was 500 feet per minute (2.5 m/s). The kiln was indirectly heated with steam. There was no humidification. Regulating the amount of air entering the kiln controlled venting and the humidity.

A JUM 3-200 total hydrocarbon analyzer was used to measure organic emissions following EPA Method 25A. The results are shown in Table 1.

<table>
<thead>
<tr>
<th>Run #</th>
<th>Initial MC</th>
<th>Final MC</th>
<th>Timea</th>
<th>VOCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103.0</td>
<td>10.2</td>
<td>99:57</td>
<td>3.44</td>
</tr>
<tr>
<td>2</td>
<td>106.2</td>
<td>7.6</td>
<td>123:46</td>
<td>4.18</td>
</tr>
</tbody>
</table>

II. Lumber Source and Handling

Enough wood for the two charges of lumber was picked up by Oregon State University from the mill in Chehalis, WA on January 9, 2005. The wood was wrapped in plastic at the mill to prevent predrying and loss of organic compounds during transit. Upon arrival at OSU, wood for the first charge was randomly selected. Half of the remaining wood was wrapped and stored in a freezer, the other half in a refrigerator. The frozen wood and some of the refrigerated wood was used for charge two. The charges were dried for five days each starting January 10 and January 19.

III. Kiln Description and Operation

A schematic of the kiln is shown in Figure 1. The kiln box is approximately 4' by 4' by 4'. It is indirectly heated by steam. Four dry-bulb thermocouples and two wet-bulb thermocouples are located on the entering-air side of the load. The dry-bulb
thermocouples are spaced in a grid. The two wet-bulb thermocouples are under a single sock at the center of the entering-air side of the load.

Humidity control

A 200 L/min MKS mass flow meter controlled and measured the amount of air entering the kiln. It was factory calibrated and checked using a bubble meter. The amount of air entering the kiln is based on the wet-bulb temperature - if it is above setpoint, the airflow is increased and if it is below setpoint the airflow is decreased. This is analogous to venting for a commercial kiln. A minimum of 6 L/min entered the kiln at all times, more than removed by the analyzer (2.6 L/min). Putting air into the kiln at a rate of 100 L/min causes the pressure in the kiln to be 60 to 130 Pa above ambient, depending on location in the kiln (high-pressure or low-pressure side). Thus, any fugitive leakage should be out of the kiln. Two additional flow meters can be manually set to provide additional airflow. These were not used in this study. The steam spray line is disabled, so no water vapor is added to the kiln atmosphere. The impinger train in Figure 1 was not used in this work.

FIGURE 1. Schematic of kiln and sampling system.
Temperature control

Temperature in the kiln is controlled by indirect steam heating. When the average of the four dry-bulb thermocouples is below setpoint, the steam pressure in the coil is increased. When it is above setpoint, steam flow to the coil is reduced.

Schedules

The drying schedule used (Figure 2) was based on drying conditions supplied by the mill. The values in Figure 2 are based on the entering-air temperature. This represents the highest temperature the wood would experience in a commercial kiln.

Charge Sequence

The lumber was unwrapped and 2" were trimmed from each end of each board to give 44" samples. These were then weighed, placed in the kiln and dried according to the schedule in Figure 2. The actual temperatures are shown in Figure 3. Sampling for hydrocarbon was done as described in section IV. At the end of drying the wood was weighed, oven dried, and reweighed so initial and final moisture contents could be determined by ASTM D4442 (oven-dry method).

FIGURE 2. Drying schedule.
FIGURE 3A. Dry- and wet-bulb temperatures for charge 1.

FIGURE 3B. Dry- and wet-bulb temperatures for charge 2.
IV. Sampling Systems and Methodologies

Sampling for total hydrocarbon is done directly from the kiln as shown in Figure 1. The concentration obtained from the hydrocarbon analyzer and the amount of air entering the kiln allow the total hydrocarbon emissions to be calculated.

Figures 4a and 4b show the hydrocarbon sampling system. Unlike stack testing, all necessary equipment is permanently mounted on the kiln and flows are controlled with valves. The sample is withdrawn from the kiln under the assumption that the gas in the kiln is well-mixed and that the composition in the kiln near the exhaust is the same as the composition of the exhaust. The THC sample was drawn from the kiln directly into a heated dilution/filter box mounted on the side of the kiln. The box was heated to 125°C. Heated dilution gas can be added to the hydrocarbon sample gas to lower the gas moisture content to the detector. Dilution air was used when the gas moisture content in the kiln was greater than 15% so that the air moisture content to the detector remained less than 15%. The sample line from the box to the analyzer was heated to 133°C. The valve at the back of the analyzer was heated to 145°C.

The fuel gas was hydrogen. The span gas was EPA Protocol 905 ppm propane in air, the mid-gas was certified 412 ppm propane. The zero gas was 0.1 ppm air. Detailed sampling procedures are in Appendix 1 and a summary is presented below.

Leak checks were conducted before and after the charge was dried. Valves are closed and all components from just behind the probe tip to the valve at the back of the analyzer are placed under a 18-20 inHg vacuum. Less than one inHg pressure change during two minutes is acceptable and this was met.

Total flow and sample flow to the analyzer were checked using an NIST-traceable flow meter. Total flow is measured with the dilution gas off. Sample flow is measured with it on. This was done at the beginning and end of each sampling interval. The meter was attached to the system near the probe tip within the heated box. The valves were repositioned so that the sample came from the flow meter rather than the kiln. Readings of flow were made with the dilution gas both off and on. The flow readings were verified by observing the change in the analyzer reading for span gas with the dilution gas off and on. The dilution ratio calculated based on the analyzer readings was within 4% of that determined by the flow meter.
FIGURE 4A. Schematic of heated filter box with air dilution system, heated sample line, and analyzer. Sample enters heated box from back of drawing (box is attached to kiln).

FIGURE 4B. Photo of VOC sampling system showing heated sample box (with white insulation), toggle valves and flow meter for calibration gases (upper left), on/off valve for calibration gas (3 at upper center right), heated sample line to analyzer (green tube, lower left), valve for sample (2 at center), toggle valve to vacuum pump (near calibration gas valves), and vent/flowmeter valve (4 at upper right).
Calibration of the zero and span of the detector was done at the beginning of each run (about every eight to ten hours). The calibration gas was introduced by setting the valves so the calibration gas entered the system near the probe tip at ambient pressure. The calibration was checked at the end of each run with no adjustments made to the zero or span during the run. The span drift was always less than two percent of full scale for a run and generally less than one percent. The zero drift was minimal during entire drying cycles.

V. Data Reduction and Treatment

The “FlowCalc” worksheet in the Excel file “Kiln, Run1.XLS” (there’s a set of files similarly named for Run 2) in Appendix 2 shows the calculations for each 3-minute interval during the charges. Column A is a reading number. Columns B and C are the clock and charge times, respectively. Columns D and E are the average dry- and wet-bulb temperatures. Column F is the vapor pressure of water at the wet-bulb temperature. The absolute humidity is shown in column G and the molal humidity in column H. These are calculated based on the dry-bulb temperature, wet-bulb temperature, vapor pressure.

Flow calculations

The volumetric dry gas flow rate in column I is the flowmeter reading adjusted for the meter calibrations and the molar humidity of the entering gas. This is in standard (at 0°C) liters per minute. In column J this has been converted to a mass flow rate in kg/min and in column K is the same information is expressed as a molal flow rate. These values are for the dry gas vented from the kiln.

Moisture calculations

The water removal rate in g/min (column L) is calculated from the humidity (column G) and the gas flow (column J). The and the total water (column M) is an integration of column L over time.

The moisture content of the wood at each time interval in the event (column N) was determined by reducing the MC of the wood from the previous value by accounting for the amount of water leaving the kiln during the interval. This amount has been adjusted by adjusting the wet-bulb temperature to make the ending moisture content match.

Total hydrocarbon calculations
The original total hydrocarbon analyzer reading is shown in column O. In column P this has been corrected to compensate for the range setting switch on the analyzer and scaling between the analyzer reading and the computer reading. Also in column P, the THA data between sampling runs has been adjusted to the average of the data during the 12-minute period before the analyzer testing and calibration time. The dilution THA (column Q) is the corrected THA reading divided by the dilution ratio (from column Y). In column R we have the opportunity to compensate for the effect of moisture on the JUM detector. This was not done so column R equals column Q. Finally in column S, the hydrocarbon concentration is converted to a dry gas basis concentration using the molar humidity (column H).

In column T, the hydrocarbon flow rate in $g_{\text{carbon}}/\text{min}$ is calculated in a manner analogous to the water flow rate using the dry gas flow rate and the hydrocarbon concentration. Column U is the integral of column T over time, the cumulative hydrocarbon release up to that point in the schedule. Column V is the cumulative unit emissions, that is, column U divided by the oven-dry weight of the wood in the kiln.

Column X indicates the hydrocarbon sampling run and column Y is the dilution ratio during that run. The next two columns, Z and AA, are the cumulative dry gas and water during the kiln cycle. These are used obtain the average gas moisture contents. The uncorrected wood moisture content is shown in column AC. This is the MC in column N before adjustment of the wet-bulb to make the beginning and ending MCs match the oven-dry test. The kiln air and analyzer air moisture contents (based on volume) are shown in columns AD and AE.

At the end of the FlowCalc spreadsheet are summaries by run of the flow data for the total hydrocarbon run intervals. Further down are summaries by impinger interval. These are the tables that appear in the body of the report. The other pages in the files “Kiln.XLS” are graphs of the data in the FlowCalc page.

Moisture content and board weight data are in the files named “Board, Run 1.XLS.”

VI. Sampling Results

The hydrocarbon emissions are summarized graphically here. All emission data is presented in detail in electronic form in Appendix 2. A summary for each sampling interval is in Table 2.

Figure 5 shows total hydrocarbon concentration (left scale) and dry gas vent rate (right scale) versus time. The vent rate is low for approximately the few hours as the kiln
comes up to temperature and the wet-bulb depression is small. The venting then increases to a maximum during days two and three. The vent rate is higher during the second charge because there was more wood in the kiln. The vent rate decreases later in the schedules when the drying rate is low. The steps in the vent rate at approximately 12-hour intervals (most evident in charge 2) are due to the changes in the schedule.

The total hydrocarbon concentration is very dependent on the venting early in the schedule with a high vent rate resulting in a low hydrocarbon concentration and vice versa. When the venting increases at approximately 18 hours, the total hydrocarbon concentration decreases. Note that total hydrocarbon concentration is not indicative of the amount of hydrocarbon emissions unless one also considers the vent rate. These two factors combined determine the emissions.

FIGURE 5a. Hydrocarbon concentration and vent rate versus time for charge 1.
FIGURE 5b. Hydrocarbon concentration and vent rate versus time for charge 2.
Figure 6 shows the cumulative hydrocarbon emissions and the rate of emissions versus time. The cumulative emissions is the emissions up to any point in time in the schedule. The rate of emissions is how much is coming out per unit time. The maximum emission rates occur early in the schedules at less than 20 hours.

FIGURE 6a. Cumulative and rate of emissions versus time (as carbon) for charge 1.

FIGURE 6b. Cumulative and rate of emissions versus time (as carbon) for charge 2.
The rate of emissions is very low at the end of the schedule. Approximately half of the emissions came out during the first 1.5 days of the 5-day schedule.

Figure 7 shows the wood moisture content versus time. The estimated moisture content should most accurately represent the MC-time relationship because the initial and final moisture contents match the oven-dry test. The initial moisture contents were 103 and 106% on a dry basis by ASTM D4442.

FIGURE 7a. Moisture content versus time for charge 1.
FIGURE 7b. Moisture content versus time for charge 2.
Figure 8 shows the cumulative hydrocarbon emissions versus moisture content. The hydrocarbon emissions for drying to any moisture content can be read from this graph. In agreement with past studies, there is a fairly linear relationship between the emissions and the decrease in moisture content, especially at lower moisture contents. Initially, the rate of emissions was quite high, possibly due to the storage of the logs (see “Anomolies” on page 14.

FIGURE 8a. Cumulative emissions (as carbon) versus moisture content for charge 1.

FIGURE 8b. Cumulative emissions (as carbon) versus moisture content for charge 2.
Table 2 shows the VOC results by run for the charges. A run is an interval between analyzer calibrations, about eight to ten hours of data. The interval time periods shown in the table include the times between sampling and mass calculations are adjusted to account for these. Sampling occurred for approximately 98% of the drying time. Samples of field sampling sheets, including dilution system and heated component data are given in Appendix 3 with full PDF format versions in Appendix 2.

TABLE 2a. Summary of sample runs for analysis of total hydrocarbon for charge 1.

<table>
<thead>
<tr>
<th>Sample Run</th>
<th>Time</th>
<th>Average Humidity</th>
<th>Dry Flow Rate @88</th>
<th>Wet Flow Rate @68</th>
<th>THC mass</th>
<th>THC mass</th>
<th>THC mass</th>
<th>THC mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hrs</td>
<td>kG/kG</td>
<td>l/min</td>
<td>l/min</td>
<td>as C g</td>
<td>wet conc</td>
<td>dry conc</td>
<td>as C lb/mf</td>
</tr>
<tr>
<td>1</td>
<td>5.35</td>
<td>0.072</td>
<td>5.9</td>
<td>6.6</td>
<td>1.75</td>
<td>526.9</td>
<td>606.9</td>
<td>0.062</td>
</tr>
<tr>
<td>2</td>
<td>5.50</td>
<td>0.146</td>
<td>48.3</td>
<td>59.6</td>
<td>14.62</td>
<td>649.3</td>
<td>803.7</td>
<td>0.520</td>
</tr>
<tr>
<td>3</td>
<td>9.95</td>
<td>0.137</td>
<td>62.1</td>
<td>12.4</td>
<td>24.30</td>
<td>271.4</td>
<td>336.8</td>
<td>0.865</td>
</tr>
<tr>
<td>4</td>
<td>8.90</td>
<td>0.130</td>
<td>123.9</td>
<td>190.0</td>
<td>16.75</td>
<td>138.4</td>
<td>169.2</td>
<td>0.996</td>
</tr>
<tr>
<td>5</td>
<td>4.25</td>
<td>0.130</td>
<td>118.7</td>
<td>6.88</td>
<td>119.8</td>
<td>146.4</td>
<td>234.4</td>
<td>0.531</td>
</tr>
<tr>
<td>6</td>
<td>10.56</td>
<td>0.126</td>
<td>138.4</td>
<td>167.2</td>
<td>156.5</td>
<td>84.8</td>
<td>103.2</td>
<td>0.428</td>
</tr>
<tr>
<td>7</td>
<td>9.80</td>
<td>0.126</td>
<td>66.1</td>
<td>11.5</td>
<td>7.54</td>
<td>72.5</td>
<td>88.3</td>
<td>0.269</td>
</tr>
<tr>
<td>8</td>
<td>4.55</td>
<td>0.125</td>
<td>68.1</td>
<td>81.8</td>
<td>2.31</td>
<td>65.8</td>
<td>83.3</td>
<td>0.062</td>
</tr>
<tr>
<td>9</td>
<td>10.05</td>
<td>0.122</td>
<td>54.6</td>
<td>65.3</td>
<td>3.93</td>
<td>66.0</td>
<td>76.6</td>
<td>0.136</td>
</tr>
<tr>
<td>10</td>
<td>8.80</td>
<td>0.120</td>
<td>35.2</td>
<td>42.0</td>
<td>2.18</td>
<td>67.0</td>
<td>80.8</td>
<td>0.077</td>
</tr>
<tr>
<td>11</td>
<td>4.80</td>
<td>0.119</td>
<td>26.1</td>
<td>31.1</td>
<td>0.95</td>
<td>70.4</td>
<td>76.0</td>
<td>0.034</td>
</tr>
<tr>
<td>12</td>
<td>9.95</td>
<td>0.120</td>
<td>21.3</td>
<td>25.4</td>
<td>1.55</td>
<td>68.3</td>
<td>82.2</td>
<td>0.055</td>
</tr>
<tr>
<td>13</td>
<td>8.10</td>
<td>0.118</td>
<td>13.8</td>
<td>16.4</td>
<td>0.90</td>
<td>75.2</td>
<td>90.4</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Sum | 69.96 | | | | | | | |
Average | 0.123 | 64.8 | 78.2 | 175.2 | 211.9 | 0.030 |

TABLE 2b. Summary of sample runs for analysis of total hydrocarbon for charge 2.

<table>
<thead>
<tr>
<th>Sample Run</th>
<th>Time</th>
<th>Average Humidity</th>
<th>Dry Flow Rate @88</th>
<th>Wet Flow Rate @68</th>
<th>THC mass</th>
<th>THC mass</th>
<th>THC mass</th>
<th>THC mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hrs</td>
<td>kG/kG</td>
<td>l/min</td>
<td>l/min</td>
<td>as C g</td>
<td>wet conc</td>
<td>dry conc</td>
<td>as C lb/mf</td>
</tr>
<tr>
<td>1</td>
<td>4.30</td>
<td>0.065</td>
<td>6.0</td>
<td>6.6</td>
<td>1.52</td>
<td>574.1</td>
<td>648.0</td>
<td>0.045</td>
</tr>
<tr>
<td>2</td>
<td>4.50</td>
<td>0.142</td>
<td>24.4</td>
<td>30.0</td>
<td>11.50</td>
<td>1065.6</td>
<td>1288.9</td>
<td>0.340</td>
</tr>
<tr>
<td>3</td>
<td>10.00</td>
<td>0.138</td>
<td>71.1</td>
<td>86.9</td>
<td>33.83</td>
<td>504.5</td>
<td>625.9</td>
<td>1.027</td>
</tr>
<tr>
<td>4</td>
<td>8.15</td>
<td>0.128</td>
<td>163.7</td>
<td>161.2</td>
<td>21.51</td>
<td>180.3</td>
<td>219.5</td>
<td>0.653</td>
</tr>
<tr>
<td>5</td>
<td>6.00</td>
<td>0.128</td>
<td>119.5</td>
<td>144.2</td>
<td>12.59</td>
<td>161.0</td>
<td>196.3</td>
<td>0.382</td>
</tr>
<tr>
<td>6</td>
<td>10.05</td>
<td>0.128</td>
<td>141.4</td>
<td>170.9</td>
<td>16.03</td>
<td>115.9</td>
<td>141.4</td>
<td>0.548</td>
</tr>
<tr>
<td>7</td>
<td>6.65</td>
<td>0.124</td>
<td>148.8</td>
<td>178.5</td>
<td>11.72</td>
<td>86.4</td>
<td>105.3</td>
<td>0.366</td>
</tr>
<tr>
<td>8</td>
<td>5.93</td>
<td>0.122</td>
<td>132.4</td>
<td>158.4</td>
<td>6.31</td>
<td>74.2</td>
<td>86.7</td>
<td>0.192</td>
</tr>
<tr>
<td>9</td>
<td>8.00</td>
<td>0.121</td>
<td>88.8</td>
<td>106.1</td>
<td>5.83</td>
<td>75.9</td>
<td>91.6</td>
<td>0.177</td>
</tr>
<tr>
<td>10</td>
<td>8.35</td>
<td>0.116</td>
<td>61.6</td>
<td>96.9</td>
<td>4.47</td>
<td>61.7</td>
<td>74.0</td>
<td>0.136</td>
</tr>
<tr>
<td>11</td>
<td>7.05</td>
<td>0.117</td>
<td>49.2</td>
<td>58.5</td>
<td>2.72</td>
<td>72.8</td>
<td>87.4</td>
<td>0.082</td>
</tr>
<tr>
<td>12</td>
<td>9.00</td>
<td>0.116</td>
<td>41.6</td>
<td>49.5</td>
<td>2.67</td>
<td>66.7</td>
<td>80.0</td>
<td>0.081</td>
</tr>
<tr>
<td>13</td>
<td>5.90</td>
<td>0.118</td>
<td>26.4</td>
<td>31.3</td>
<td>1.28</td>
<td>76.5</td>
<td>91.7</td>
<td>0.039</td>
</tr>
<tr>
<td>14</td>
<td>9.05</td>
<td>0.116</td>
<td>24.0</td>
<td>28.5</td>
<td>1.72</td>
<td>74.1</td>
<td>88.8</td>
<td>0.052</td>
</tr>
<tr>
<td>15</td>
<td>10.15</td>
<td>0.116</td>
<td>14.8</td>
<td>17.8</td>
<td>1.31</td>
<td>91.3</td>
<td>97.5</td>
<td>0.040</td>
</tr>
<tr>
<td>16</td>
<td>8.90</td>
<td>0.114</td>
<td>10.1</td>
<td>12.0</td>
<td>0.79</td>
<td>63.3</td>
<td>100.1</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Sum | 123.78| | | | | | | |
Average | 0.116 | 62.6 | 83.6 | 209.6 | 252.2 | 0.038 |
VII. Quality Assurance

Leak checks

Leak checks were performed on the VOC system before and after drying and on the impinger sample train before each run.

Calibration

Data for the calibration gases are given in Appendix 4. The mid gas was not named because the analyzer was within tolerance without naming. The calibration sheet for the flow meter is also included in Appendix 4 as is the thermocouple calibration check.

Anomalies

During the first charge, data collection ceased after 100 hours. We ran the second charge to remedy this.

During both charges the wood had a very strong odor during the first 24 to 36 hours. In our experience, this odor is not characteristic of red alder. The mill said this odor was typical for wood from rafted logs and the lumber tested did come from rafted logs. It is our belief that the high levels of VOC emissions measured are a reflection of this and that fresh wood would have significantly lower emissions.

There were no other anomalies during the work that would significantly affect the data.
Appendix 1. Detailed Sampling Procedures
INSTRUCTIONS FOR CHECKS OF EMISSIONS KILN

Purpose: Ensure kiln is operating correctly

Clock time: Record from computer

Run time: Record from computer. Check the box if the computer screen being refreshed and time is advancing.

Box temperature: Read from metal electrical box under desk, left controller. The top and bottom numbers should be similar on the box should be similar, about 126°C.

Valve temperature: Read from metal electrical box under desk, right controller. The top and bottom numbers should be similar on the box should be similar, about 154°C.

Dry-bulb temperature: Read from computer screen. Compare to graph to be sure it’s correct. If it’s not within a degree or two of the chart, check again in a few minutes. During startup (the first 3 or so hours), it may not be able to track. If it’s too high, the heat valve should be closed, too low and the heat valve should be open. If it does not appear to be working correctly, call Mike or Mark.

Wet-bulb temperature: Read from computer screen. Compare to graph to be sure it’s correct.

If it is too low, it means that the kiln atmosphere is too dry. Check the flow meters. If Flow1 is about 10 L/min (its lower limit), make sure that Flow2 and Flow3 are turned off.

If it’s too high, then either the kiln atmosphere is too humid or the sock is not being wetted. If Flow 1 is near 200 L/min (its upper limit) add venting by opening Flow2 and/or Flow 3. The maximum for Flow2 is 50 L/min, if it reads over this value for several readings, reduce it to about 45 L/min. Don’t change Flow3 often, rather set it and leave it for several hours if possible. Keep the Flow 3 reading constant by small adjustments. As Flow1 decreases or Flow2 turned down, there is more pressure behind Flow3 and the flow increased. Check for water in the wet-bulb reservoir (push the float down and make sure it’s getting water).

Check both Wet-bulb1 and Wet-bulb2 and make sure they are reading about the same. If they differ by more than 2°C, call Mike or Mark.

If both wet-bulbs are reading the same as the dry-bulb, check the wet-bulb water.
If these procedures do not correct the wet-bulb temperature within 30 minutes, call Mike or Mark.

Line temperature: Read from gray box on wall above analyzer. It should read about 275°F.

Chiller temperature: Read the chiller temperature. It should be about -1°C.

Flow 1: Read from computer. The value of Flow1 changes depending on the wet-bulb. If Flow 1 is 10 L/min and the wet-bulb is too low, there’s probably nothing we can do. If it’s 200 L/min and the wet-bulb is too high, Flow2 and/or Flow3 can be opened. Flow2 and Flow3 should be adjusted so that Flow1 stays below 175 to 200 L/min.

Flow 2: Read from computer. The value of Flow2 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Do not set it to < 40 L/min if you think Flow1 is going to decrease or it will go off scale and not be read by the computer.

Flow 3: Read from meter. The value of Flow3 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Be sure to clearly record this value and when you change it.

Dilution flow: Read dilution flow meter. It should read the same setting as the red flag. Do not adjust. If significantly different, investigate.

F/M Flow: Read from rotometer. This should be about 400 to 500 cc/min.

Line vacuum: Read from the vacuum gauge. This should be about 20"Hg.
INSTRUCTIONS - FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER
PRE-SAMPLE PROCEDURE

BACKGROUND INFORMATION
Get the dry- and wet-bulb temperatures from the kiln schedule or off the computer. Use the highest expected values for the run.

Read absolute humidity off the psychrometric chart or table.
Calculate or read from tables -
Percent moisture = 100 / [1 + 1 / 1.61*AbHum]
Target Dilution Ratio (TDR) = 15 / Percent Moisture

Event = the name of the drying cycle.
Run = the number of the 3-hour interval.
Operator, that's you.
Date and time are now, as you start the data collection process.

AMBIENT DATA
Call 9-754-0081 and get altimeter setting.
Read the laboratory temperature from the thermometer.

ANALYZER CALIBRATION
Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Open the zero gas tank valve
zero toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
wait for a stable reading (about 30 to 60 seconds)
use the zero dial (pot) on THA to get a zero reading
read the analyzer
read computer
note pot setting
close valve on zero gas tank

Open span gas tank valve
span toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
set analyzer to range 3
wait for a stable reading (about 30 to 60 seconds)
use the span dial (pot) on THA to get a reading of 905 ppm
read the analyzer, record, for example, 9.05 or 900
read computer (should read about 905)
note pot setting

Open mid gas tank valve
mid toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
wait for a stable reading (about 30 to 60 seconds)
read analyzer (do not adjust pot settings), record, for example, 4.12 or 412
read computer (should about 412)
check for within tolerance
turn off mid gas
all toggle switches off

SET DILUTION FLOW BEFORE RUN
Set valves so that 1, 2, 3 = off; 4=meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 4 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min
Make sure the average does not include any “bad” readings
Record the average, L/min = cc/min / 1000
Write the Event, Run, and “Pre-TFR” on the Gilibrator printout.

Calculate the next two values -
Target dilution flow rate (TDFR) is the TFR x (1 - DR)
Target sample flow rate (TSFR) is the TFR x DR
Check that the sum of these is the Total Flow Rate

Set dilution flow
Set red pointer to desired dilution flow (on meter with valve 1)
Slowly open lower valve on dilution flow meter (1=on; 2, 3=off; 4=meter)
Use upper valve on dilution flow meter to adjust flow
Do not adjust this meter after this point
Read the meter that you just set and record the value

Use the Gilibrator to take 4 readings of the sample flow rate (SFR). This is the flow through the analyzer after dilution is set. It will vary, depending on the dilution setting.
Make sure the average does not include any “bad” readings
Record the average, L/min = cc/min / 1000
Write “Pre-SFR” on the Gilibrator printout.
CHECK DILUTION FLOW BEFORE RUN
Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve
span toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
set analyzer to range 3
wait for a stable reading (about 30 to 60 seconds) record
turn off all calibration gas tank valves
all toggle switches off

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate the dilution ratio based on span gas by dividing the Diluted span by the undiluted span.

If the Dilution ratios do not agree within 5% - DO NOT PROCEED****. Use 100*(DR_{Span} - DR_{Flow})/DR_{Flow} to calculate the % difference.

**** check calculations, check that values for ppm and flows make sense, remeasure everything. If it still does not agree, call Mike or Mark

START RUN
Set valve so that 1, 2, 5 = on; 3, 4=off; all calibration tank valves off

Record the start time. Use the computer clock for all times or set your watch to the computer time.

Make sure analyzer is on appropriate range, usually range 3, to keep THC reading on computer between 60 and 750.

Monitor system, as needed. Record system condition at least hourly.

End time should be no more than 3 hours from start time.
POST-SAMPLE PROCEDURE

AT END OF RUN
Record your name as the operator.
Event = the drying cycle. Run = the 3-hour interval.
Operator, that’s you. Date and time are now, as you start the data collection process.

AMBIENT DATA
Call 9-754-0081 and get temperature and altimeter
Local pressure = (Altimeter - 0.23) x 3.3867
Read the laboratory temperature from the thermometer.

Fill out appropriate information on Pre-sample side of data sheet for next run. This will save time in between runs.

END TIME
Record computer time.
DO NOT adjust dilution gas yet.

CHECK DILUTION FLOW AFTER RUN
Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve
span toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
wait for a stable reading (about 30 -60 seconds)
record
all toggle switches off

Sample flow rate. Set valves so that 1=on; 2, 3 = off; 4=meter. This allows gas to flow only from the meter and the dilution to the detector.

Use the Gilibrator to take 5 readings of the sample flow rate (SFR). This is the flow through the analyzer with dilution on.
Make sure the average does not include any “bad” readings
Record the average, L/min = cc/min / 1000
Write “Post-SFR” on the Gilibrator printout.
Read dilution flow meter
To calculate the L/min, divide scfh by 2.12
Turn off dilution flow meter using valve 1

Total flow rate. Set valves so that 1, 2, 3 = off; 4= meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 5 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min
Make sure the average does not include any “bad” readings
Record the average, L/min = cc/min / 1000
Write “Post-TFR” on the Gilibrator printout.

CHECK CALIBRATION OF ANALYZER
Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Span gas tank valve should be open
span toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
set analyzer to range 4
wait for a stable reading (about 30 -60 seconds)
read analyzer (do not adjust pot settings), record, for example, 1.50 as 1500
read computer (should read about 152 due to range 4 setting)
note pot setting
check for within tolerance - between 1483 and 1573

Open mid gas tank valve
mid toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
set analyzer to range 3
wait for a stable reading (about 30 -60 seconds)
read analyzer (do not adjust pot settings), record, for example, 8.50 as 850
read computer (should read same as analyzer)
check for within tolerance

Open the zero gas tank valve
zero toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
wait for a stable reading (about 30 -60 seconds)
read analyzer (do not adjust pot settings)
Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate % difference as $100 \times \frac{\text{Absolute Value} (\text{DR}_{\text{Span}} - \text{DR}_{\text{Flow}})}{\text{DR}_{\text{Flow}}}$

Record the time now as the end time for check.

Tear off the four sets of Gilibrator readings (Pre-TFR, Pre-SFR, Post-SFR, Post-TFR) and staple to paper with other records.

Start Pre-Sample procedure for next run.
Appendix 2. Data in Electronic Form
Appendix 3. Samples of Field Data Sheets
Appendix 4. Calibration Data